word “conservative” has, however, become a term-of-art to refer to a GC technique that
operates in an uncooperative (and hopefully not hostile) run-time system.

11.6 Precise Garbage Collection

In conventional GC terminology, the opposite of “conservative” is precise. This, too,
is a misnomer, because a GC cannot be precise, i.e., both sound and complete. Rather,
precision here is a statement about the ability to identify references: when confronted
with a value, a precise GC knows exactly what is and isn’t a reference, and where the
references are. This removes the monumental effort that a conservative GC has to put
into guessing non-references (and hoping to eliminate as many potential references as
possible through this process).

Within the space of precise GC, which is what most contemporary language run-
time systems use, there is a wide range of implementation techniques. I refer you to
Paul Wilson’s survey| (which, despite its relative age in this fast-moving field, remains
an excellent resource), as well as the book and other materials from Richard Jones. In
particular, for a quick and readable overview of a generational garbage collector, read
Simple Generational Garbage Collection and Fast Allocation.

12 Representation Decisions

Go back and look again at our interpreter for function as values [REF]. Do you see
something curiously non-uniform about it?
Do Now!

No, really, do. Do you?

Consider how we chose to represent our two different kinds of values: numbers and
functions. Ignoring the superficial numV and closV wrappers, focus on the underlying
data representations. We represented the interpreted language’s numbers as Racket
numbers, but we did not represent the interpreted language’s functions (closures) as
Racket functions (closures).

That’s our non-uniformity. It would have been more uniform to use Racket’s rep-
resentations for both, or also to not use Racket’s representation for either. So why did
we make this particular choice?

We were trying to illustrate and point, and that point is what we will explore right
now.

12.1 Changing Representations

For a moment, let’s explore numbers. Racket’s numbers make a good target for reuse
because they are so powerful: we get arbitrary-sized integers (bignums), rationals
(which benefit from the bignum representation of integers), complex numbers, and
so on. Therefore, they can represent most ordinary programming language number
systems. However, that doesn’t mean they are what we want: they could be too little
or too much.

87


ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps
http://www.cs.kent.ac.uk/people/staff/rej/gc.html
http://www.cs.princeton.edu/~appel/papers/143.ps

* They are too much if what we want is a more restricted number system. For
instance, Java prescribes a very specific set of fixed-size representations (e.g.,
int is specified to be 32-bit). Numbers that fall outside these sets cannot be
directly represented as numbers, and arithmetic must respect these sets (e.g.,
overflowing so that adding 1 to 2147483647 does not produce 2147483648).

* They are too little if we want even richer numbers, whether quaternions or num-
bers with associated probabilities.

Worse, we didn’t even stop and ask what we wanted, but blithely proceeded with
Racket numbers.

The reason we did so is because we weren’t really interested in the study of num-
bers; rather, we were interested in programming language features such as functions-as-
values. As language designers, however, you should be sure to ask these hard questions
up front.

Now let’s talk about our representation of closures. We could have instead rep-
resented closures by exploiting Racket’s corresponding concept, and correspondingly,
function application with unvarnished Racket application.

Do Now!

Replace the closure data structure with Racket functions representing functions-
as-values.

Here we go:

(define-type Value
[numV (n : number)]
[closV (f : (Value -> Value))])

(define (interp [expr : ExprC] [env : Env]) : Value
(type-case ExprC expr
[numC (n) (numV n)]
[idC (n) (lookup n env)]
[appC (f a) (local ([define f-value (interp f env)]
[define a-value (interp a env)])
((closV-f f-value) a-value))]
[plusC (1 r) (num+ (interp 1 env) (interp r env))]
[multC (1 r) (num* (interp 1 env) (interp r env))]
[lamC (a b) (closV (lambda (arg-val)
(interp b
(extend-env (bind a arg-val)

env))))1))

Exercise

Observe a curious shift. In our previous implementation, the environment
was extended in the appC case. Here, it’s extended in the 1amC case. Is
one of these incorrect? If not, why did this change occur?

88



This is certainly concise, but we’ve lost something very important: understanding.
Saying that a source language function corresponds to lambda tells us virtually noth-
ing: if we already knew precisely what 1ambda does we might not be studying it, and
if we didn’t, this mapping would teach us absolutely nothing (and might, in fact, pile
confusion on top of our ignorance). For the same reason, we did not use Racket’s state
to understand the varieties of stateful operators [REF].

Once we’ve understood the feature, however, we should feel to use it as a represen-
tation. Indeed, doing so might yield much more concise interpreters because we aren’t
doing everything manually. In fact, some later interpreters [REF] will become virtually
unreadable if we did not exploit these richer representations. Nevertheless, exploiting
host language features has perils that we should safeguard against.

12.2 Errors

When programs go wrong, programmers need a careful presentation of errors. Using
host language features runs the risk that users will see host language errors, which they
will not understand. Therefore, we have to carefully translate error conditions into
terms that the user of our language will understand, without letting the host language
“leak through”.

Worse, programs that should error might not! For instance, suppose we decide
that functions should only appear in top-level positions. If we fail to expressly check
for this, desugaring into the more permissive lambda may result in an interpreter that
produces answers where it should have halted with an error. Therefore, we have to
take great care to permit only the intended surface language to be mapped to the host
language.

As another example, consider the different mutation operations. In our language,
attempting to mutate an unbound variable produces an error. In some languages, doing
so results in the variable being defined. Failing to pin down our intended semantics
is a common language designer error, saying instead, “It is whatever the implementa-
tion does”. This attitude (a) is lazy and sloppy, (b) may yield unexpected and negative
consequences, and (c¢) makes it hard for you to move your language from one imple-
mentation platform to another. Don’t ever make this mistake!

12.3 Changing Meaning

Mapping functions-as-values to lambda works especially because we intend for the
two to have the same meaning. However, this makes it difficult to change the meaning
of what a function does. Lemme give ya’ a hypothetic: suppose we wanted our lan-
guage to implement dynamic scope. In our original interpreter, this was easy (almost
too easy, as history shows). But try to make the interpreter that uses lambda implement
dynamic scope. It can similarly be difficult or at least subtle to map eager evaluation
onto a language with lazy application [REF].
Exercise

Convert the above interpreter to use dynamic scope.

&9

It’s a little like
saying, “Now that
we understand
addition in terms of
increment-by-one,
we can use addition
to define
multiplication: we
don’t have to use
only
increment-by-one
to define it.”

Don’t let this go
past the
hypothetical stage,
please.



The point is that the raw data structure representation does not make anything es-
pecially easy, but it usually doesn’t get in the way, either. In contrast, mapping to host
language features can make some intents—mainly, those match what the host language
already does!—especially easy, and others subtle or difficult. There is the added dan-
ger that we may not be certain of what the host language’s feature does (e.g., does its
“lambda” actually implement static scope?).

The moral is that this is a good property to exploit only we want to “pass through”
the base language’s meaning—-and then it is especially wise because it ensures that
we don’t accidentally change its meaning. If, however, we want to exploit a significant
part of the base language and only augment its meaning, perhaps other implementation
strategies [REF] will work just as well instead of writing an interpreter.

12.4 One More Example

Let’s consider one more representation change. What is an environment?

An environment is a map from names to values (or locations, once we have muta-
tion). We’ve chosen to implement the mapping through a data structure, but...do we
have another way to represent maps? As functions, of course! An environment, then,
is a function that takes a name as an argument and return its bound value (or an error):

(define-type-alias Env (symbol -> Value))

What is the empty environment? It’s the one that returns an error no matter what name
you try to look up:

(define (mt-env [name : symbol])
(error ’lookup '"name not found"))

(In principle we should put a type annotation on the return, and it should be Value,
except of course thiis is vacuous.) Extending an environment with a binding creates
a function that takes a name and checks whether it is the name just extended; if so it
returns the corresponding value, otherwise it punts to the environment being extended:

(define (extend-env [b : Binding] [e : Env])
(lambda ([name : symbol]) : Value
(if (symbol=? name (bind-name b))
(bind-val b)
(lookup name e))))

Finally, how do we look up a name in an environment? We simply apply the environ-
ment!

(define (lookup [n : symbol] [e : Env]) : Value
(e n))

And with that, we’re done!

90



